一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as 3.中间时刻速度vt/2=v平=(vt vo)/2 4.末速度vt=vo at 5.中间位置速度vs/2=[(vo2 vt2)/2]1/2 6.位移s=v平t=vot at2/2=vt/2t 7.加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则af2) 2.互成角度力的合成: f=(f12 f22 2f1f2cosα)1/2(余弦定理) f1⊥f2时:f=(f12 f22)1/2 3.合力大小范围:|f1-f2|≤f≤|f1 f2| 4.力的正交分fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)f1与f2的值一定时,f1与f2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:f=-f′{负号表示方向相反,f、f′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡f合=0,推广 {正交分解法、三力汇交原理} 5.超重:fn>g,失重:fnr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,a=max,共振的防止和应用〔见第一册p175〕 5.机械波、横波、纵波〔见第二册p2〕 6.波速v=s/t=λf=λ/t{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册p21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册p22〕/振动中的能量转化〔见第一册p173〕. 六、冲量与动量(物体的受力与动量的变化) 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:i=ft {i:冲量(n?s),f:恒力(n),t:力的作用时间(s),方向由f决定} 4.动量定理:i=δp或ft=mvt–mvo {δp:动量变化δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1 m2v2=m1v1′ m2v2′ 6.弹性碰撞:δp=0;δek=0 {即系统的动量和动能均守恒} 7.非弹性碰撞δp=0;00 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律〔见第二册p41〕/能源的开发与利用、环保〔见第二册p47〕/物体的内能、分子的动能、分子势能〔见第二册p47〕. 九、气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:t=t 273 {t:热力学温度(k),t:摄氏温度(℃)} 体积v:气体分子所能占据的空间,单位换算:1m3=103l=106ml 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013*105pa=76cmhg(1pa=1n/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1v1/t1=p2v2/t2 {pv/t=恒量,t为热力学温度(k)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而t为热力学温度(k). 十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60*10-19c);带电体电荷量等于元电荷的整数倍 2.库仑定律:f=kq1q2/r2(在真空中){f:点电荷间的作用力(n),k:静电力常量k=9.0*109n?m2/c2,q1、q2:两点电荷的电量(c),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:e=f/q(定义式、计算式){e:电场强度(n/c),是矢量(电场的叠加原理),q:检验电荷的电量(c)} 4.真空点(源)电荷形成的电场e=kq/r2 {r:源电荷到该位置的距离(m),q:源电荷的电量} 5.匀强电场的场强e=uab/。
一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as3.中间时刻速度vt/2=v平=(vt vo)/2 4.末速度vt=vo at5.中间位置速度vs/2=[(vo2 vt2)/2]1/2 6.位移s=v平t=vot at2/2=vt/2t7.加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则a<0}8.实验用推论δs=at2 {δs为连续相邻相等时间(t)内位移之差}9.主要物理量及单位:初速度(vo):m/s;加速度(a):m/s2;末速度(vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(vt-vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册p19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册p24〕。2)自由落体运动1.初速度vo=0 2.末速度vt=gt3.下落高度h=gt2/2(从vo位置向下计算) 4.推论vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=vot-gt2/2 2.末速度vt=vo-gt (g=9.8m/s2≈10m/s2)3.有用推论vt2-vo2=-2gs 4.上升最大高度hm=vo2/2g(抛出点算起)5.往返时间t=2vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:vx=vo 2.竖直方向速度:vy=gt3.水平方向位移:x=vot 4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度vt=(vx2 vy2)1/2=[vo2 (gt)2]1/2合速度方向与水平夹角β:tgβ=vy/vx=gt/v07.合位移:s=(x2 y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动1.线速度v=s/t=2πr/t 2.角速度ω=φ/t=2π/t=2πf3.向心加速度a=v2/r=ω2r=(2π/t)2r 4.向心力f心=mv2/r=mω2r=mr(2π/t)2=mωv=f合5.周期与频率:t=1/f 6.角速度与线速度的关系:v=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(φ):弧度(rad);频率(f):赫(hz);周期(t):秒(s);转速(n):r/s;半径(r):米(m);线速度(v):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力1.开普勒第三定律:t2/r3=k(=4π2/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2 (g=6.67*10-11n?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2 {r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;ω=(gm/r3)1/2;t=2π(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=7.9km/s;v2=11.2km/s;v3=16.7km/s6.地球同步卫星gmm/(r地 h)2=m4π2(r地 h)/t2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
物理: 损失的机械能=外力 非保守内力做的功 注:重力势能以地球和物体为研究对象 重力作为内力; 保守力指做功和运动路径无关之和位置有关的力,如万有引力,弹簧弹力,这些力以势能形式包含在机械能中,所以其做功不会造成机械能的损失。
化学: 酯是根据形成它的酸和醇(酚)来命名的,例如乙酸乙酯ch3cooc2h5、乙酸苯酯ch3cooc6h5、苯甲酸甲酯c6h5cooch3、乙酸丁酯ch3cooc4h9、丙烯酸辛酯ch2chcooc8h17等。 甲酸乙酯由甲酸和乙醇脱水形成;乙酸甲酯由乙酸和甲醇脱水形成。
这些上课都会详细讲的。 (课件在文库搜一下应该有。)
一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as 3.中间时刻速度vt/2=v平=(vt vo)/2 4.末速度vt=vo at 5.中间位置速度vs/2=[(vo2 vt2)/2]1/2 6.位移s=v平t=vot at2/2=vt/2t 7.加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则a<0} 8.实验用推论δs=at2 {δs为连续相邻相等时间(t)内位移之差} 9.主要物理量及单位:初速度(vo):m/s;加速度(a):m/s2;末速度(vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(vt-vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册p19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册p24〕。 2)自由落体运动 1.初速度vo=0 2.末速度vt=gt 3.下落高度h=gt2/2(从vo位置向下计算) 4.推论vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动 1.位移s=vot-gt2/2 2.末速度vt=vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论vt2-vo2=-2gs 4.上升最大高度hm=vo2/2g(抛出点算起) 5.往返时间t=2vo/g (从抛出落回原位置的时间)注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:vx=vo 2.竖直方向速度:vy=gt 3.水平方向位移:x=vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度vt=(vx2 vy2)1/2=[vo2 (gt)2]1/2 合速度方向与水平夹角β:tgβ=vy/vx=gt/v0 7.合位移:s=(x2 y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动 1.线速度v=s/t=2πr/t 2.角速度ω=φ/t=2π/t=2πf 3.向心加速度a=v2/r=ω2r=(2π/t)2r 4.向心力f心=mv2/r=mω2r=mr(2π/t)2=mωv=f合 5.周期与频率:t=1/f 6.角速度与线速度的关系:v=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(φ):弧度(rad);频率(f):赫(hz);周期(t):秒(s);转速(n):r/s;半径(r):米(m);线速度(v):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力 1.开普勒第三定律:t2/r3=k(=4π2/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:f=gm1m2/r2 (g=6.67*10-11n?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2 {r:天体半径(m),m:天体质量(kg)} 4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;ω=(gm/r3)1/2;t=2π(r3/gm)1/2{m:中心天体质量} 5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=7.9km/s;v2=11.2km/s;v3=16.7km/s 6.地球同步卫星gmm/(r地 h)2=m4π2(r地 h)/t2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注: (1)天体运动所需的向心力由万有引力提供,f向=f万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。三、力(常见的力、力的合成与分解) 1)常见的力 1.重力g=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)} 3.滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力f=gm1m2/r2 (g=6.67*10-11n?m2/kg2,方向在它们的连线上) 6.静电力f=kq1q2/r2 (k=9.0*109n?m2/c2,方向在它们的连。
先看一看上面的三个图 (1)小球 m 所受的力:重力 mg 竖直向下, 劈形物体竖直向上的支持力 n 。
那么,合力也是在竖直方向上。根据牛顿第二定律,它的加速度也是沿竖直方向。
开始运动之后,由于初速度为零,速度方向与加速度方向相同。小球 m 沿着竖直方向向下运动。
(2)为了求小球的加速度,首先将 m 和 m 看成是一个整体,整体的质量为 m m,这个整体沿斜面下滑的加速度 a 由下式计算: (m m)g sin θ = (m m) a, ∴ a = gsin θ, 小球 m 向下的加速度 a 应当是整体 (m m)的加速度 a 沿竖直方向的分量,根据图(3), a = a sin θ = g sin θ*sin θ.。
高考物理知识点总结一、力 物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面g=mg,离地面高h处g/=mg/,其中g/=[r/(r h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即f=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是n/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件可以判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μf n 进行计算,其中fn 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解. 5.物体的受力分析 (1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析. (3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态. 6.力的合成与分解 (1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则. (3)力的合成:求几个已知力的合力,叫做力的合成. 共点的两个力(f 1 和f 2 )合力大小f的取值范围为:|f 1 -f 2 |≤f≤f 1 f 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算). 在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法. 7.共点力的平衡 (1)共点力:作用在物体的同一点,或作用线相交于一点的几个力. (2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑f=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑fx =0,∑fy =0. (4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等. 二、直线运动 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
ag8亚洲国际集团 copyright © 2016 ag8亚洲国际集团. 页面生成时间:2.248秒